
CS267 L15 Graph Partitioning II.1 Lucas Sp 2000

CS 267 Applications of Parallel Computers

Lecture 14:

Graph Partitioning - II

Bob Lucas

derived from earlier lectures by Jim
Demmel and Dave Culler

www.nersc.gov/~dhbailey/cs267

CS267 L15 Graph Partitioning II.2 Lucas Sp 2000

Outline of Graph Partitioning Lectures

° Review of last lecture

° Partitioning without Nodal Coordinates - continued
• Kernighan/Lin

• Spectral Partitioning

° Multilevel Acceleration
• BIG IDEA, will appear often in course

° Available Software
• good sequential and parallel software availble

° Comparison of Methods

CS267 L15 Graph Partitioning II.3 Lucas Sp 2000

Review Definition of Graph Partitioning

° Given a graph G = (N, E, WN, WE)
• N = nodes (or vertices), E = edges

• WN = node weights, WE = edge weights

° Ex: N = {tasks}, WN = {task costs}, edge (j,k) in E means task j
sends WE(j,k) words to task k

° Choose a partition N = N1 U N2 U … U NP such that
• The sum of the node weights in each Nj is “about the same”

• The sum of all edge weights of edges connecting all different pairs
Nj and Nk is minimized

° Ex: balance the work load, while minimizing communication

° Special case of N = N1 U N2: Graph Bisection

CS267 L15 Graph Partitioning II.4 Lucas Sp 2000

Review of last lecture

° Partitioning with nodal coordinates
• Rely on graphs having nodes connected (mostly) to “nearest neighbors”

in space

• Common when graph arises from physical model

• Algorithm very efficient, does not depend on edges!

• Can be used as good starting guess for subsequent partitioners, which do
examine edges

• Can do poorly if graph less connected:

° Partitioning without nodal coordinates
• Depends on edges

• No assumptions about where “nearest neighbors” are

• Began with Breadth First Search (BFS)

CS267 L15 Graph Partitioning II.5 Lucas Sp 2000

Partitioning without nodal coordinates - Kernighan/Lin

° Take a initial partition and iteratively improve it
• Kernighan/Lin (1970), cost = O(|N|3) but easy to understand

• Fiduccia/Mattheyses (1982), cost = O(|E|), much better, but more
complicated

° Let G = (N,E,WE) be partitioned as N = A U B, where
|A| = |B|

° T = cost(A,B) = ΣΣΣΣ {W(e) where e connects nodes in A
and B}

° Find subsets X of A and Y of B with |X| = |Y| so that
swapping X and Y decreases cost:

- newA = A - X U Y and newB = B - Y U X

- newT = cost(newA , newB) < cost(A,B)

- Keep choosing X and Y until cost no longer decreases

° Need to compute newT efficiently for many possible
X and Y, choose smallest

CS267 L15 Graph Partitioning II.6 Lucas Sp 2000

Kernighan/Lin Algorithm
 Compute T = cost(A,B) for initial A, B … cost = O(|N|2)
 Repeat
 … One pass greedily computes |N|/2 possible X,Y to swap, picks best
 Compute costs D(n) for all n in N … cost = O(|N|2)
 Unmark all nodes in N … cost = O(|N|)
 While there are unmarked nodes … |N|/2 iterations
 Find an unmarked pair (a,b) maximizing gain(a,b) … cost = O(|N|2)
 Mark a and b (but do not swap them) … cost = O(1)
 Update D(n) for all unmarked n,
 as though a and b had been swapped … cost = O(|N|)
 Endwhile
 … At this point we have computed a sequence of pairs
 … (a1,b1), … , (ak,bk) and gains gain(1),…., gain(k)
 … where k = |N|/2, numbered in the order in which we marked them
 Pick m maximizing Gain = ΣΣΣΣk=1 to m gain(k) … cost = O(|N|)
 … Gain is reduction in cost from swapping (a1,b1) through (am,bm)
 If Gain > 0 then … it is worth swapping
 Update newA = A - { a1,…,am } U { b1,…,bm } … cost = O(|N|)
 Update newB = B - { b1,…,bm } U { a1,…,am } … cost = O(|N|)
 Update T = T - Gain … cost = O(1)
 endif
 Until Gain <= 0

CS267 L15 Graph Partitioning II.7 Lucas Sp 2000

 Comments on Kernighan/Lin Algorithm

° Most expensive line show in red

° Some gain(k) may be negative, but if later gains are
large, then final Gain may be positive
• can escape “local minima” where switching no pair helps

° How many times do we Repeat?
• K/L tested on very small graphs (|N|<=360) and got convergence

after 2-4 sweeps

• For random graphs (of theoretical interest) the probability of
convergence in one step appears to drop like 2-|N|/30

CS267 L15 Graph Partitioning II.8 Lucas Sp 2000

Partitioning without nodal coordinates - Spectral Bisection

° Based on theory of Fiedler (1970s), popularized by
Pothen, Simon, Liou (1990)

° Motivation, by analogy to a vibrating string

° Basic definitions

° Vibrating string, revisited

° Implementation via the Lanczos Algorithm
• To optimize sparse-matrix-vector multiply, we graph partition

• To graph partition, we find an eigenvector of a matrix associated
with the graph

• To find an eigenvector, we do sparse-matrix vector multiply

• No free lunch ...

CS267 L15 Graph Partitioning II.9 Lucas Sp 2000

Motivation for Spectral Bisection: Vibrating String

° Think of G = 1D mesh as masses (nodes) connected by springs
(edges), i.e. a string that can vibrate

° Vibrating string has modes of vibration, or harmonics

° Label nodes by whether mode - or + to partition into N- and N+

° Same idea for other graphs (eg planar graph ~ trampoline)

CS267 L15 Graph Partitioning II.10 Lucas Sp 2000

Basic Definitions

° Definition: The incidence matrix In(G) of a graph
G(N,E) is an |N| by |E| matrix, with one row for each
node and one column for each edge. If edge e=(i,j)
then column e of In(G) is zero except for the i-th and
j-th entries, which are +1 and -1, respectively.

° Slightly ambiguous definition because multiplying
column e of In(G) by -1 still satisfies the definition,
but this won’t matter...

° Definition: The Laplacian matrix L(G) of a graph
G(N,E) is an |N| by |N| symmetric matrix, with one
row and column for each node. It is defined by
• L(G) (i,i) = degree of node I (number of incident edges)

• L(G) (i,j) = -1 if i != j and there is an edge (i,j)

• L(G) (i,j) = 0 otherwise

CS267 L15 Graph Partitioning II.11 Lucas Sp 2000

Example of In(G) and L(G) for 1D and 2D meshes

CS267 L15 Graph Partitioning II.12 Lucas Sp 2000

Properties of Incidence and Laplacian matrices

° Theorem 1: Given G, In(G) and L(G) have the
following properties (proof on web page)

• L(G) is symmetric. (This means the eigenvalues of L(G) are real
and its eigenvectors are real and orthogonal.)

• Let e = [1,…,1]T, i.e. the column vector of all ones. Then L(G)*e=0.

• In(G) * (In(G))T = L(G). This is independent of the signs chosen for
each column of In(G).

• Suppose L(G)*v = λλλλ*v, v != 0, so that v is an eigenvector and λλλλ an
eigenvalue of L(G). Then

• The eigenvalues of L(G) are nonnegative:

- 0 = λλλλ1 <= λλλλ2 <= … <= λλλλn

• The number of connected components of G is equal to the
number of λλλλi equal to 0. In particular, λλλλ2 != 0 if and only if G is
connected.

° Definition: λλλλ2(L(G)) is the algebraic connectivity of G

λλλλ = || In(G)T * v ||2 / || v ||2 … ||x||2 = ΣΣΣΣk xk
2

 = ΣΣΣΣ { (v(i)-v(j))2 for all edges e=(i,j) } / ΣΣΣΣi v(i)2

CS267 L15 Graph Partitioning II.13 Lucas Sp 2000

Spectral Bisection Algorithm

° Spectral Bisection Algorithm:
• Compute eigenvector v2 corresponding to λλλλ2(L(G))

• For each node n of G

- if v2(n) < 0 put node n in partition N-

- else put node n in partition N+

° Why does this make sense? First reasons...

° Theorem 2 (Fiedler, 1975): Let G be connected, and
N- and N+ defined as above. Then N- is connected. If
no v2(n) = 0, then N+ is also connected. (proof on web page)

° Recall λ λ λ λ2(L(G)) is the algebraic connectivity of G

° Theorem 3 (Fiedler): Let G1(N,E1) be a subgraph of
G(N,E), so that G1 is “less connected” than G. Then
λλλλ2(L(G)) <= λλλλ2(L(G)) , i.e. the algebraic connectivity
of G1 is less than or equal to the algebraic
connectivity of G. (proof on web page)

CS267 L15 Graph Partitioning II.14 Lucas Sp 2000

Motivation for Spectral Bisection: Vibrating String

° Vibrating string has modes of vibration, or harmonics

° Modes computable as follows
• Model string as masses connected by springs (a 1D mesh)

• Write down F=ma for coupled system, get matrix A

• Eigenvalues and eigenvectors of A are frequencies and shapes of
modes

° Label nodes by whether mode - or + to get N- and N+

° Same idea for other graphs (eg planar graph ~ trampoline)

CS267 L15 Graph Partitioning II.15 Lucas Sp 2000

Details for vibrating string

° Force on mass j = k*[x(j-1) - x(j)] + k*[x(j+1) - x(j)]

 = -k*[-x(j-1) + 2*x(j) - x(j+1)]

° F=ma yields m*x’’(j) = -k*[-x(j-1) + 2*x(j) - x(j+1)] (*)

° Writing (*) for j=1,2,…,n yields

 x(1) 2*x(1) - x(2) 2 -1 x(1) x(1)
 x(2) -x(1) + 2*x(2) - x(3) -1 2 -1 x(2) x(2)
m * d2 … =-k* … =-k* … * … =-k*L* …
 dx2 x(j) -x(j-1) + 2*x(j) - x(j+1) -1 2 -1 x(j) x(j)
 … … … … …
 x(n) 2*x(n-1) - x(n) -1 2 x(n) x(n)

 (-m/k) x’’ = L*x

CS267 L15 Graph Partitioning II.16 Lucas Sp 2000

Details for vibrating string - continued

° -(m/k) x’’ = L*x, where x = [x1,x2,…,xn]T

° Seek solution of form x(t) = sin(αααα*t) * x0
• L*x0 = (m/k)*αααα2 * x0 = λλλλ * x0

• For each integer i, get λλλλ = 2*(1-cos(i*ππππ/(n+1)), x0 = sin(1*i*ππππ/(n+1))

 sin(2*i*ππππ/(n+1))

 …

 sin(n*i*ππππ/(n+1))

• Thus x0 is a sine curve with frequency proportional to i

• Thus αααα2 = 2*k/m *(1-cos(i*ππππ/(n+1)) or αααα ~ sqrt(k/m)*ππππ*i/(n+1)

° L = 2 -1 not quite L(1D mesh),

 -1 2 -1 but we can fix that ...

 ….

 -1 2

CS267 L15 Graph Partitioning II.17 Lucas Sp 2000

A “vibrating string” for L(1D mesh)

° First equation changes to m*x’’(1) = -k*[-x(2)+ 2x(1)]
• First row of T changes from [2 -1 0 …] to [1 -1 0 …]

° Last equation changes to m*x’’(n)=-k*[-x(n-1) + 2x(n)]
• Last row of T changes from [… 0 -1 2] to [… 0 -1 1]

° Component j of i-th eigenvector changes to
cos((j-.5)*(i-1)*ππππ/n)

CS267 L15 Graph Partitioning II.18 Lucas Sp 2000

Eigenvectors of L(1D mesh)

Eigenvector 1
 (all ones)

Eigenvector 2

Eigenvector 3

CS267 L15 Graph Partitioning II.19 Lucas Sp 2000

2nd eigenvector of L(planar mesh)

CS267 L15 Graph Partitioning II.20 Lucas Sp 2000

4th eigenvector of L(planar mesh)

CS267 L15 Graph Partitioning II.21 Lucas Sp 2000

Computing v2 and λ λ λ λ2 of L(G) using Lanczos

° Given any n-by-n symmetric matrix A (such as L(G))
Lanczos computes a k-by-k “approximation” T by
doing k matrix-vector products, k << n

° Approximate A’s eigenvalues/vectors using T’s

Choose an arbitrary starting vector r
b(0) = ||r||
j=0
repeat
 j=j+1
 q(j) = r/b(j-1) … scale a vector
 r = A*q(j) … matrix vector multiplication, the most expensive step
 r = r - b(j-1)*v(j-1) … “saxpy”, or scalar*vector + vector
 a(j) = v(j)T * r … dot product
 r = r - a(j)*v(j) … “saxpy”
 b(j) = ||r|| … compute vector norm
until convergence … details omitted

T = a(1) b(1)
 b(1) a(2) b(2)
 b(2) a(3) b(3)
 … … …
 b(k-2) a(k-1) b(k-1)
 b(k-1) a(k)

CS267 L15 Graph Partitioning II.22 Lucas Sp 2000

References

° Details of all proofs on web page

° A. Pothen, H. Simon, K.-P. Liou, “Partitioning sparse
matrices with eigenvectors of graphs”, SIAM J. Mat.
Anal. Appl. 11:430-452 (1990)

° M. Fiedler, “Algebraic Connectivity of Graphs”,
Czech. Math. J., 23:298-305 (1973)

° M. Fiedler, Czech. Math. J., 25:619-637 (1975)

° B. Parlett, “The Symmetric Eigenproblem”, Prentice-
Hall, 1980

° www.cs.berkeley.edu/~ruhe/lantplht/lantplht.html

° www.netlib.org/laso

CS267 L15 Graph Partitioning II.23 Lucas Sp 2000

Introduction to Multilevel Partitioning

° If we want to partition G(N,E), but it is too big to do
efficiently, what can we do?
• 1) Replace G(N,E) by a coarse approximation Gc(Nc,Ec), and

partition Gc instead

• 2) Use partition of Gc to get a rough partitioning of G, and then
iteratively improve it

° What if Gc still too big?
• Apply same idea recursively

CS267 L15 Graph Partitioning II.24 Lucas Sp 2000

Multilevel Partitioning - High Level Algorithm
 (N+,N-) = Multilevel_Partition(N, E)
 … recursive partitioning routine returns N+ and N- where N = N+ U N-
 if |N| is small
(1) Partition G = (N,E) directly to get N = N+ U N-
 Return (N+, N-)
 else
(2) Coarsen G to get an approximation Gc = (Nc, Ec)
(3) (Nc+ , Nc-) = Multilevel_Partition(Nc, Ec)
(4) Expand (Nc+ , Nc-) to a partition (N+ , N-) of N
(5) Improve the partition (N+ , N-)
 Return (N+ , N-)
 endif

(2,3)

(2,3)

(2,3)

(1)

(4)

(4)

(4)

(5)

(5)

(5)

How do we
 Coarsen?
 Expand?
 Improve?

“V - cycle:”

CS267 L15 Graph Partitioning II.25 Lucas Sp 2000

Multilevel Kernighan-Lin

° Coarsen graph and expand partition using
maximal matchings

° Improve partition using Kernighan-Lin

CS267 L15 Graph Partitioning II.26 Lucas Sp 2000

Maximal Matching

° Definition: A matching of a graph G(N,E) is a subset
Em of E such that no two edges in Em share an
endpoint

° Definition: A maximal matching of a graph G(N,E) is
a matching Em to which no more edges can be
added and remain a matching

° A simple greedy algorithm computes a maximal
matching:

let Em be empty
mark all nodes in N as unmatched
for i = 1 to |N| … visit the nodes in any order
 if i has not been matched
 if there is an edge e=(i,j) where j is also unmatched,
 add e to Em

 mark i and j as matched
 endif
 endif
endfor

CS267 L15 Graph Partitioning II.27 Lucas Sp 2000

Maximal Matching - Example

CS267 L15 Graph Partitioning II.28 Lucas Sp 2000

Coarsening using a maximal matching

Construct a maximal matching Em of G(N,E)

for all edges e=(j,k) in Em
 Put node n(e) in Nc
 W(n(e)) = W(j) + W(k) … gray statements update node/edge weights
for all nodes n in N not incident on an edge in Em
 Put n in Nc … do not change W(n)
… Now each node r in N is “inside” a unique node n(r) in Nc

… Connect two nodes in Nc if nodes inside them are connected in E
for all edges e=(j,k) in Em
 for each other edge e’=(j,r) in E incident on j
 Put edge ee = (n(e),n(r)) in Ec
 W(ee) = W(e’)
 for each other edge e’=(r,k) in E incident on k
 Put edge ee = (n(r),n(e)) in Ec
 W(ee) = W(e’)

If there are multiple edges connecting two nodes in Nc, collapse them,
 adding edge weights

CS267 L15 Graph Partitioning II.29 Lucas Sp 2000

Example of Coarsening

CS267 L15 Graph Partitioning II.30 Lucas Sp 2000

Expanding a partition of Gc to a partition of G

CS267 L15 Graph Partitioning II.31 Lucas Sp 2000

Multilevel Spectral Bisection

° Coarsen graph and expand partition using
maximal independent sets

° Improve partition using Rayleigh Quotient Iteration

CS267 L15 Graph Partitioning II.32 Lucas Sp 2000

Maximal Independent Sets

° Definition: An independent set of a graph G(N,E) is a subset Ni
of N such that no two nodes in Ni are connected by an edge

° Definition: A maximal independent set of a graph G(N,E) is an
independent set Ni to which no more nodes can be added and
remain an independent set

° A simple greedy algorithm computes a maximal independent
set:

let Ni be empty
for i = 1 to |N| … visit the nodes in any order
 if node i is not adjacent to any node already in Ni
 add i to Ni
 endif
endfor

CS267 L15 Graph Partitioning II.33 Lucas Sp 2000

Coarsening using Maximal Independent Sets

… Build “domains” D(i) around each node i in Ni to get nodes in Nc
… Add an edge to Ec whenever it would connect two such domains
Ec = empty set
for all nodes i in Ni
 D(i) = ({i}, empty set)
 … first set contains nodes in D(i), second set contains edges in D(i)
unmark all edges in E
repeat
 choose an unmarked edge e = (i,j) from E
 if exactly one of i and j (say i) is in some D(k)
 mark e
 add j and e to D(k)
 else if i and j are in two different D(k)’s (say D(ki) and D(kj))
 mark e
 add edge (ki, kj) to Ec
 else if both i and j are in the same D(k)
 mark e
 add e to D(k)
 else
 leave e unmarked
 endif
until no unmarked edges

CS267 L15 Graph Partitioning II.34 Lucas Sp 2000

Example of Coarsening

CS267 L15 Graph Partitioning II.35 Lucas Sp 2000

Expanding a partition of Gc to a partition of G

° Need to convert an eigenvector vc of L(Gc) to an
approximate eigenvector v of L(G)

° Use interpolation:

For each node j in N
 if j is also a node in Nc, then
 v(j) = vc(j) … use same eigenvector component
 else
 v(j) = average of vc(k) for all neighbors k of j in Nc
 end if
endif

CS267 L15 Graph Partitioning II.36 Lucas Sp 2000

Example: 1D mesh of 9 nodes

CS267 L15 Graph Partitioning II.37 Lucas Sp 2000

Improve eigenvector v using Rayleigh Quotient Iteration

j = 0
pick starting vector v(0) … from expanding vc
repeat
 j=j+1
 r(j) = vT(j-1) * L(G) * v(j-1)
 … r(j) = Rayleigh Quotient of v(j-1)
 … = good approximate eigenvalue
 v(j) = (L(G) - r(j)*I)-1 * v(j-1)
 … expensive to do exactly, so solve approximately
 … using an iteration called SYMMLQ,
 … which uses matrix-vector multiply (no surprise)
 v(j) = v(j) / || v(j) || … normalize v(j)
until v(j) converges
… Convergence is very fast: cubic

CS267 L15 Graph Partitioning II.38 Lucas Sp 2000

Example of convergence for 1D mesh

CS267 L15 Graph Partitioning II.39 Lucas Sp 2000

Available Implementations

° Multilevel Kernighan/Lin
• METIS (www.cs.umn.edu/~metis)

• ParMETIS - parallel version

° Multilevel Spectral Bisection
• S. Barnard and H. Simon, “A fast multilevel implementation of

recursive spectral bisection …”, Proc. 6th SIAM Conf. On Parallel
Processing, 1993

• Chaco (www.cs.sandia.gov/CRF/papers_chaco.html)

° Hybrids possible
• Ex: Using Kernighan/Lin to improve a partition from spectral

bisection

CS267 L15 Graph Partitioning II.40 Lucas Sp 2000

Comparison of methods

° Compare only methods that use edges, not nodal coordinates
• CS267 webpage and KK95a (see below) have other comparisons

° Metrics
• Speed of partitioning

• Number of edge cuts

• Other application dependent metrics

° Summary
• No one method best

• Multi-level Kernighan/Lin fastest by far, comparable to Spectral in the
number of edge cuts

- www-users.cs.umn.edu/~karypis/metis/publications/mail.html

- see publications KK95a and KK95b

• Spectral give much better cuts for some applications

- Ex: image segmentation

- www.cs.berkeley.edu/~jshi/Grouping/overview.html

- see “Normalized Cuts and Image Segmentation”

CS267 L15 Graph Partitioning II.41 Lucas Sp 2000

Test matrices, and number of edges cut for a 64-way partition

Graph

144
4ELT
ADD32
AUTO
BBMAT
FINAN512
LHR10
MAP1
MEMPLUS
SHYY161
TORSO

 # of
Nodes

 144649
 15606
 4960
 448695
 38744
 74752
 10672
 267241
 17758
 76480
 201142

 # of
 Edges

1074393
 45878
 9462
3314611
 993481
 261120
 209093
 334931
 54196
 152002
1479989

Description

3D FE Mesh
2D FE Mesh
32 bit adder
3D FE Mesh
2D Stiffness M.
Lin. Prog.
Chem. Eng.
Highway Net.
Memory circuit
Navier-Stokes
3D FE Mesh

Edges cut
 for 64-way
 partition
 88806
 2965
 675
 194436
 55753
 11388
 58784
 1388
 17894
 4365
 117997

Expected
cuts for
2D mesh
 6427
 2111
 1190
 11320
 3326
 4620
 1746
 8736
 2252
 4674
 7579

Expected
cuts for
3D mesh
 31805
 7208
 3357
 67647
 13215
 20481
 5595
 47887
 7856
 20796
 39623

Expected # cuts for 64-way partition of 2D mesh of n nodes
 n1/2 + 2*(n/2)1/2 + 4*(n/4)1/2 + … + 32*(n/32)1/2 ~ 17 * n1/2

Expected # cuts for 64-way partition of 3D mesh of n nodes =
 n2/3 + 2*(n/2)2/3 + 4*(n/4)2/3 + … + 32*(n/32)2/3 ~ 11.5 * n2/3

For Multilevel Kernighan/Lin, as implemented in METIS (see KK95a)

CS267 L15 Graph Partitioning II.42 Lucas Sp 2000

Speed of 256-way partitioning (from KK95a)

Graph

144
4ELT
ADD32
AUTO
BBMAT
FINAN512
LHR10
MAP1
MEMPLUS
SHYY161
TORSO

 # of
Nodes

 144649
 15606
 4960
 448695
 38744
 74752
 10672
 267241
 17758
 76480
 201142

 # of
 Edges

1074393
 45878
 9462
3314611
 993481
 261120
 209093
 334931
 54196
 152002
1479989

Description

3D FE Mesh
2D FE Mesh
32 bit adder
3D FE Mesh
2D Stiffness M.
Lin. Prog.
Chem. Eng.
Highway Net.
Memory circuit
Navier-Stokes
3D FE Mesh

Multilevel
 Spectral
Bisection
 607.3
 25.0
 18.7
 2214.2
 474.2
 311.0
 142.6
 850.2
 117.9
 130.0
 1053.4

Multilevel
Kernighan/
 Lin
 48.1
 3.1
 1.6
 179.2
 25.5
 18.0
 8.1
 44.8
 4.3
 10.1
 63.9

Partitioning time in seconds

Kernighan/Lin much faster than Spectral Bisection!

